Orbifold he Notation for Surface Groups Finspired by Son Conway and Bill Thurston

Savannah Crawford - UoU Pre-REU

A philisophical question is there a limit to the number of ways the Endidean plane (R2) can be tiled? What if I equate patterns with the same symmetries:

Symmetries of a Table

Definitions

topology a field of mathematics which is concerned with the properties of a geometric object whil are preserved under continuous defermations, such as stretching, twisting, crumpting and bending.

Definitions
Loometry a bijective map between
two metric spaces which preserves

$$f:\mathbb{R}^2 \to \mathbb{R}^2$$

distances ie $\forall x, y \in \mathbb{R}^2$
then $d(x,y) = d(f(x), f(y))$
Wall paper group a discrete group of
isometries of the Euclidean plane

Classifying a ballpaper pattern

1. Identify mirror Lines

Classifying a Wallpaper pattern

1. Identify mirror Lines

Classifying a Wallpaper pattern

1. Identify mirror Lines

2. identify points of rotation not on mirror lines

Classifying a Wallpaper pattern

1. Identify mirror Lines

2. identify points of rotation not on mirror lines

Classifying a ballpaper pattern

Understanding Mirrors mirror lines are fixed by some reflection in the group * m-fold mirror points are points which lie on exactly m mirrors notice an m-fold mirror point has angle T The orbital with mirrorpoints with types a,b,c,... is denoted that...

Understanding Gyrations A gyration is a point of rotational Symmetry which does not lie on any mirror line 2*22 *2222 \bigcirc 2-fold

Understanding Gyrations A gyration is a point of rotational symmetry which does not lie on any mirror line *2222 2*22

Orbifold Notation in General ingrediments: natural numbers: 1,2,3,... Stor * - mirror tires handle O - wonder Cross cap, × - miracles guide reflections of the form 0 ··· O ABC··· * abc... # aBX ... X···X

Euler Characteristic

> a topological invariant denoted by X classically defined for polyhedra X = V - E + F#of f #of vertices faces #of eages

Euler Characteristic 3 Orbifolds			
"Symmetry Land Ticket Charges" \$2 to start (bc sphere)			
ticket type	Symbol	Cost 5. Adult	6 Ticket Child
2-trip	2	12	1 4
3-trip	3	23	13
n-trip	n	n-1 2	$\frac{n-1}{2n}$
TOP Licket	0 or X	2	1
Chaperone's	*		I

Symmetry Land Rules

⇒ Children without a TOP ticket must have a Chaperone

→ A chaperone's ticket can enter alone or with any number of children → Symmetry Land extends credit to regular visitors.

It ways to spend exactly \$2 2222 3*3 *632 333 ** 632 *2222 XX *442 2*22 XX 442 22* \mathbf{O} *333 22×

Verification apply the following to a group of characteristic O.

- [1] Replace a group AB...C by *AB...C this halves the characteristic
- [2] Replace an adult's TOP ticket (0) by two child's ones (x)
- 3 Replace achild's TOP ticket (X) by a chaperone's ticket (X)

4 Since a chap erone is now present, replace an adult's n-tri pticket by two child's ones.