The Orbifold Notation for Surface Grows
"inspired by don conway and Brill Thustons

Savannah Crawford-Uoll Prep REEL

A philisophical question ls there a limit to the number of ways the Euclidean plane (\mathbb{R}^{2}) can be tiled?
What if 1 equate patterns with the same symmetries?

Symmetries of a Table

Symmetries of a Table

Symmetries of a Table

Symmetries of a Table

The orbifold

of a table

Definitions
topology a field of mathernatics which is concerned with the properties of a geometric object whit are preserved undercontinuous deformations, such as stretching, twisting, crumpling and bending.

Definitions
isometry a bijective map between two metric spaces which preserves distances $\quad \begin{array}{ll} & f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\ \text { ie }\end{array} x, y \in \mathbb{R}^{2}$
then $d(x, y)=d(f(x), f(y))$
wallpaper group a discrete group of isometries of the Euclidean plane

Classifying a Wallpaper pattern

1. Identify mirror lines

Classifying a Wallpaper pattern

1. Identify mirror lines

Classifying a Wallpaper pattern

1. Identify mirror lines
2. identify points of rotation not on mirror lines

Classifying a Wallpaper pattern

1. Identify mirror lines
2. identify points of rotation not on mirror lines

Classifying a Wallpaper pattern

Symmetries in \mathbb{R}^{2}
\rightarrow isometries respect Euclidean distance ie $d(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$

Translation

Glide Reflection

Kaleidoscopes

Reflection

Rotation

gyration

Understanding Mirrors
\rightarrow mirror lines are fixed by some reflection in the group

* m-fold mirror points are points which lie on exactly m mirrors notice an m-fold mirror point has angle $\frac{m}{\pi}$
The orbifold with mirrorpoints with types as, c_{1}.. is denoted \#abc...

Back to tables:

Understanding Gyrations
A gyration is a point of rotational symmetry which does not lie on any mirror line

$$
2 * 22
$$

Understanding Gyrations
A gyration is a point of rotational symmetry which does not lie on any mirror line

+2222			

$$
2 * 22
$$

Orbifold Notation in General
ingredinents:
natural numbers: $1,2,3$,
star * - mirror lives
handle 0 -wonder
cross cap, x-miracles gride reflections
of the form

$$
0 \cdots O A B C \cdots * a b c \ldots * \alpha \beta \gamma \cdots x \cdots x
$$

Euler Characteristic
\rightarrow a topological invariant denoted by x classically defined for polyhedra

$$
\begin{aligned}
& X=V-E+F
\end{aligned}
$$

Euler Characteristic of Orbifolds "Symmetr yhand Ticket Charges" $\$ 2$ to start $\begin{gathered}\text { (bo sphere) }\end{gathered}$

ticket type	Symbol	Cost of Adult	
Ticket			
2 -rip	2	$\frac{1}{2}$	$\frac{1}{4}$
3 -trip	3	$\frac{2}{3}$	$\frac{1}{3}$
-trip	n	$\frac{n-1}{n}$	$\frac{n-1}{2 n}$
Top ticket	0 or	2	1
Chaperone's	$*$	-	1

SymmetryLand Rules
\rightarrow Children without a Top ticket must have a chaperone
\rightarrow A chaperone's ticket can enter alone or with any number of children
\rightarrow Symmetry Land extends credit to regular visitors.

17 ways to spend exactly $\$ 2$

$* 632$	$3 * 3$	2222
632	333	$* *$
$* 442$	$* 2222$	$* x$
442	$2 * 22$	$x x$
$* 333$	$22 *$	0
	$22 x$	

Verification apply the following to a group of characteristic 0 .

1 Replace agroup $A B \ldots C$ by $* A B \ldots C$ - this halves the characteristic
[2] Replace an adult's Top ticket (0) by two child's ones (x)
(3) Replace child's Top ticket (x) by a chaperone's ticket (*)
4 Since a chap erone is now present, replace an adult's n-trip pticket by two child's ones.

